47 research outputs found

    Reinforcement Learning in Individuals at Risk for Alzheimer\u27s Disease

    Get PDF
    Explicit memory is the hallmark of impairment in Alzheimer’s disease (AD) while implicit memory has mixed task-dependent results. Models of memory processes have posited that hippocampal function is sensitive to reinforcement learning (RL), which involves both explicit and implicit memory. The hippocampus is also vital for the transfer of learned associations to novel situations. Nevertheless, RL paradigms have been underutilized in assessing memory processes in individuals at risk for AD, which may aid in early identification of cognitive decline. Thirty-six apolipoprotein-E (APOE) genotyped older adults (Male n=8; Mage=80; Meducation=15 years) performed word stem completion, word recognition, and RL tasks. The RL task was comprised of an RL phase, an implicit testing phase, and explicit recognition component. Group comparisons were made based on low risk (APOE ε4-; n=16) vs. high risk (APOE ε4+; n=20) for AD. A series of mixed ANOVAs based on task performance indicated that risk groups did not differ on EM measures (RL, word recognition, and RL recognition). However, high risk participants exhibited significantly poorer IM performance (RL testing and word stem) than the low risk group, p = .03. The pattern of results in the present study was counter to prediction in that risk groups did not differ on explicit memory measures, which was strongly supported by existing literature. However, the exhibited performance of poorer implicit memory in the high risk group is consistent with results implicating the hippocampus in the application learned associations to novel environments. RL paradigms may offer high sensitivity for assessing preclinical decline

    Reinforcement Learning, Error-Related Negativity, and Genetic Risk for Alzheimer\u27s Disease

    Get PDF
    Reinforcement learning (RL) has been widely used as a model of animal and human learning and decision-making. The neural networks underlying RL involve many of the same structures primarily affected by Alzheimer’s disease (AD) such as the hippocampus. Yet, RL and non-invasive evaluation of its neural underpinnings have been underutilized as a framework for understanding disease pathology and its pre-clinical states. This study aimed to provide a novel approach for assessing subtle changes in asymptomatic apolipoprotein-E (APOE) carriers and non-carriers. Electroencephalography was collected from forty APOE genotyped older adults (Male n = 11; Mage = 79.30; Meducation = 14.88 years) during an RL task comprised of distinct phases (RL, implicit). Neural components associated with the error detection system involved in RL, the response error-related negativity (ERN) and the feedback error-related negativity (FRN), were examined for individuals at low (APOE ε4-; n=20) and high risk (APOE ε4+; n=20). RL task performance did not differ between risk groups. However, the high-risk group consistently elicited greater peak amplitudes than the low-risk group. The pattern of results indicated that the high-risk group deviated from typical RL processes such that peak amplitudes did not differ between early and late learning. Additionally, despite intact learning, latent hippocampal atrophy is believed to have disrupted the transfer and use of learned information to novel situations thus altering the hippocampal-frontostriatal circuit responsible for adaptive behavior and the corresponding neural signal. The results indicate that disease related changes can be identified prior to clinical diagnosis or functional decline using RL and a non-invasive assessment of neural function, which may prove to inform clinical conceptualization, assessment, and treatment

    Executive Functioning and Risk for Alzheimer\u27s Disease in The Cognitively Intact: Family History Predicts Wisconsin Card Sorting Test Performance

    Get PDF
    Alzheimer’s disease (AD) research typically focuses on memory. However, executive functioning (EF) deficits are also common among AD patients; these deficits are associated with decreased functioning in activities of daily living, an important criterion in diagnosing AD. A classic test of EF ability, the Wisconsin Card Sort Test (WCST), has demonstrated sensitivity to differentiating individuals with AD from healthy controls, discriminating AD groups based on disease severity, and distinguishing AD from other types of dementia. Such sensitivity to AD raises the possibility that the WCST is also sensitive to very early, preclinical differences between those who have heightened risk for AD and those with lower risks. Method: The current study, therefore, examined WCST performance in healthy, cognitively intact older adults with a first-degree (i.e., sibling or parent) family history (FH) of AD (n _ 18) and those with no such FH of AD (n _ 24). Results: Results revealed significant group differences for Categories Achieved, Percent Conceptual Level Responses, Total Errors, Perseverative Errors, and Non-Perseverative Errors, with the FH_ group consistently exhibiting poorer performance. Moreover, hierarchical regression analyses indicated that after accounting for age, sex, and education, FH significantly predicted all 5 of these variables. Conclusions: These results speak to the potential role of EF in bolstering the current understanding of early cognitive markers of future decline. Furthering what is known about the relationship between AD and nonmemory specific domains of cognition such as executive functioning may allow for better prediction of cognitive decline and potential progression to AD

    Physical Activity Reduces Hippocampal Atrophy in Elders at Genetic Risk for Alzheimer\u27s Disease

    Get PDF
    We examined the impact of physical activity (PA) on longitudinal change in hippocampal volume in cognitively intact older adults at varying genetic risk for the sporadic form of Alzheimer\u27s disease (AD). Hippocampal volume was measured from structural magnetic resonance imaging (MRI) scans administered at baseline and at an 18-month follow-up in 97 healthy, cognitively intact older adults. Participants were classified as High or Low PA based on a self-report questionnaire of frequency and intensity of exercise. Risk status was defined by the presence or absence of the apolipoprotein E-epsilon 4 (APOE-ε4) allele. Four subgroups were studied: Low Risk/High PA (n = 24), Low Risk/Low PA (n = 34), High Risk/High PA (n = 22), and High Risk/Low PA (n = 17). Over the 18 month follow-up interval, hippocampal volume decreased by 3% in the High Risk/Low PA group, but remained stable in the three remaining groups. No main effects or interactions between genetic risk and PA were observed in control brain regions, including the caudate, amygdala, thalamus, pre-central gyrus, caudal middle frontal gyrus, cortical white matter (WM), and total gray matter (GM). These findings suggest that PA may help to preserve hippocampal volume in individuals at increased genetic risk for AD. The protective effects of PA on hippocampal atrophy were not observed in individuals at low risk for AD. These data suggest that individuals at genetic risk for AD should be targeted for increased levels of PA as a means of reducing atrophy in a brain region critical for the formation of episodic memories

    Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium.

    Get PDF
    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04-1.10, P = 2.9 × 10(-6)], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03-1.07, P = 1.7 × 10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07-1.12, P = 5.1 × 10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 × 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 × 10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.BCAC is funded by Cancer Research UK (C1287/A10118, C1287/A12014) and by the European Community’s Seventh Framework Programme under grant agreement n8 223175 (HEALTH-F2–2009-223175) (COGS). Meetings of the BCAC have been funded by the European Union COST programme (BM0606). Genotyping of the iCOGS array was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10710), the Canadian Institutes of Health Research for the ‘CIHR Team in Familial Risks of Breast Cancer’ program and the Ministry of Economic Development, Innovation and Export Trade of Quebec (PSR-SIIRI-701). Additional support for the iCOGS infrastructure was provided by the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112—the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The ABCFS and OFBCR work was supported by grant UM1 CA164920 from the National Cancer Institute (USA). The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products or organizations imply endorsement t by the US Government or the BCFR. The ABCFS was also supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. J.L.H. is a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellow and M.C.S. is a NHMRC Senior Research Fellow. The OFBCR work was also supported by the Canadian Institutes of Health Research ‘CIHR Team in Familial Risks of Breast Cancer’ program. The ABCS was funded by the Dutch Cancer Society Grant no. NKI2007-3839 and NKI2009-4363. The ACP study is funded by the Breast Cancer Research Trust, UK. The work of the BBCC was partly funded by ELAN-Programme of the University Hospital of Erlangen. The BBCS is funded by Cancer Research UK and Breakthrough Breast Cancer and acknowledges NHS funding to the NIHR Biomedical Research Centre, and the National Cancer Research Network (NCRN). E.S. is supported by NIHR Comprehensive Biomedical Research Centre, Guy’s & St. Thomas’ NHS Foundation Trust in partnership with King’s College London, UK. Core funding to the Wellcome Trust Centre for Human Genetics was provided by the Wellcome Trust (090532/Z/09/Z). I.T. is supported by the Oxford Biomedical Research Centre. The BSUCH study was supported by the Dietmar-Hopp Foundation, the Helmholtz Society and the German Cancer Research Center (DKFZ). The CECILE study was funded by the Fondation de France, the French National Institute of Cancer (INCa), The National League against Cancer, the National Agency for Environmental l and Occupational Health and Food Safety (ANSES), the National Agency for Research (ANR), and the Association for Research against Cancer (ARC). The CGPS was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital.The CNIO-BCS was supported by the Genome Spain Foundation the Red Temática de Investigación Cooperativa en Cáncer and grants from the Asociación Española Contra el Cáncer and the Fondo de Investigación Sanitario PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit, CNIO is supported by the Instituto de Salud Carlos III. D.A. was supported by a Fellowship from the Michael Manzella Foundation (MMF) and was a participant in the CNIO Summer Training Program. The CTS was initially supported by the California Breast Cancer Act of 1993 and the California Breast Cancer Research Fund (contract 97-10500) and is currently funded through the National Institutes of Health (R01 CA77398). Collection of cancer incidence e data was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885. HAC receives support from the Lon V Smith Foundation (LVS39420). The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The GENICA was funded by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation, Stuttgart, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), as well as the Department of Internal Medicine , Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus Bonn, Germany. The HEBCS was supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (132473), the Finnish Cancer Society, The Nordic Cancer Union and the Sigrid Juselius Foundation. The HERPACC was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, Culture and Technology of Japan, by a Grant-in-Aid for the Third Term Comprehensive 10-Year strategy for Cancer Control from Ministry Health, Labour and Welfare of Japan, by a research grant from Takeda Science Foundation , by Health and Labour Sciences Research Grants for Research on Applying Health Technology from Ministry Health, Labour and Welfare of Japan and by National Cancer Center Research and Development Fund. The HMBCS was supported by short-term fellowships from the German Academic Exchange Program (to N.B), and the Friends of Hannover Medical School (to N.B.). Financial support for KARBAC was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, the Stockholm Cancer Foundation and the Swedish Cancer Society. The KBCP was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland. kConFab is supported by grants from the National Breast Cancer Foundation , the NHMRC, the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia and the Cancer Foundation of Western Australia. The kConFab Clinical Follow Up Study was funded by the NHMRC (145684, 288704, 454508). Financial support for the AOCS was provided by the United States Army Medical Research and Materiel Command (DAMD17-01-1-0729), the Cancer Council of Tasmania and Cancer Foundation of Western Australia and the NHMRC (199600). G.C.T. and P.W. are supported by the NHMRC. LAABC is supported by grants (1RB-0287, 3PB-0102, 5PB-0018 and 10PB-0098) from the California Breast Cancer Research Program. Incident breast cancer cases were collected by the USC Cancer Surveillance Program (CSP) which is supported under subcontract by the California Department of Health. The CSP is also part of the National Cancer Institute’s Division of Cancer Prevention and Control Surveillance, Epidemiology, and End Results Program, under contract number N01CN25403. LMBC is supported by the ‘Stichting tegen Kanker’ (232-2008 and 196-2010). The MARIE study was supported by the Deutsche Krebshilfe e.V. (70-2892-BR I), the Federal Ministry of Education Research (BMBF) Germany (01KH0402), the Hamburg Cancer Society and the German Cancer Research Center (DKFZ). MBCSG is supported by grants from the Italian Association ciation for Cancer Research (AIRC) and by funds from the Italian citizens who allocated a 5/1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects ‘5 × 1000’). The MCBCS was supported by the NIH grants (CA122340, CA128978) and a Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), the Breast Cancer Research Foundation and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. The MEC was supported by NIH grants CA63464, CA54281, CA098758 and CA132839. The work of MTLGEBCS was supported by the Quebec Breast Cancer Foundation, the Canadian Institutes of Health Research (grant CRN-87521) and the Ministry of Economic Development, Innovation and Export Trade (grant PSR-SIIRI-701). MYBRCA is funded by research grants from the Malaysian Ministry of Science, Technology and Innovation (MOSTI), Malaysian Ministry of Higher Education (UM.C/HlR/MOHE/06) and Cancer Research Initiatives Foundation (CARIF). Additional controls were recruited by the Singapore Eye Research Institute, which was supported by a grant from the Biomedical Research Council (BMRC08/1/35/19,tel:08/1/35/19./550), Singapore and the National medical Research Council, Singapore (NMRC/CG/SERI/2010). The NBCS was supported by grants from the Norwegian Research council (155218/V40, 175240/S10 to A.L.B.D., FUGE-NFR 181600/ V11 to V.N.K. and a Swizz Bridge Award to A.L.B.D.). The NBHS was supported by NIH grant R01CA100374. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The OBCS was supported by research grants from the Finnish Cancer Foundation, the Sigrid Juselius Foundation, the Academy of Finland, the University of Oulu, and the Oulu University Hospital. The ORIGO study was supported by the Dutch Cancer Society (RUL 1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NLCP16). The PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. pKARMA is a combination of the KARMA and LIBRO-1 studies. KARMA was supported by Ma¨rit and Hans Rausings Initiative Against Breast Cancer. KARMA and LIBRO-1 were supported the Cancer Risk Prediction Center (CRisP; www.crispcenter.org), a Linnaeus Centre (Contract ID 70867902) financed by the Swedish Research Council. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). SASBAC was supported by funding from the Agency for Science, Technology and Research of Singapore (A∗STAR), the US National Institute of Health (NIH) and the Susan G. Komen Breast Cancer Foundation KC was financed by the Swedish Cancer Society (5128-B07-01PAF). The SBCGS was supported primarily by NIH grants R01CA64277, R01CA148667, and R37CA70867. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The SBCS was supported by Yorkshire Cancer Research S305PA, S299 and S295. Funding for the SCCS was provided by NIH grant R01 CA092447. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry. SEARCH is funded by a programme grant from Cancer Research UK (C490/A10124) and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. The SEBCS was supported by the BRL (Basic Research Laboratory) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2012-0000347). SGBCC is funded by the National Medical Research Council Start-up Grant and Centre Grant (NMRC/CG/NCIS /2010). The recruitment of controls by the Singapore Consortium of Cohort Studies-Multi-ethnic cohort (SCCS-MEC) was funded by the Biomedical Research Council (grant number: 05/1/21/19/425). SKKDKFZS is supported by the DKFZ. The SZBCS was supported by Grant PBZ_KBN_122/P05/2004. K. J. is a fellow of International PhD program, Postgraduate School of Molecular Medicine, Warsaw Medical University, supported by the Polish Foundation of Science. The TNBCC was supported by the NIH grant (CA128978), the Breast Cancer Research Foundation , Komen Foundation for the Cure, the Ohio State University Comprehensive Cancer Center, the Stefanie Spielman Fund for Breast Cancer Research and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. Part of the TNBCC (DEMOKRITOS) has been co-financed by the European Union (European Social Fund – ESF) and Greek National Funds through the Operational Program ‘Education and Life-long Learning’ of the National Strategic Reference Framework (NSRF)—Research Funding Program of the General Secretariat for Research & Technology: ARISTEIA. The TWBCS is supported by the Institute of Biomedical Sciences, Academia Sinica and the National Science Council, Taiwan. The UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR). ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. Funding to pay the Open Access publication charges for this article was provided by the Wellcome Trust.This is the advanced access published version distributed under a Creative Commons Attribution License 2.0, which can also be viewed on the publisher's webstie at: http://hmg.oxfordjournals.org/content/early/2014/07/04/hmg.ddu311.full.pdf+htm

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Comparison of 6q25 Breast Cancer Hits from Asian and European Genome Wide Association Studies in the Breast Cancer Association Consortium (BCAC)

    Get PDF
    Peer reviewe

    Event-Related Potentials, Inhibition, and Risk for Alzheimer’s Disease Among Cognitively Intact Elders

    Get PDF
    Background: Despite advances in understanding Alzheimer’s disease (AD), prediction of AD prior to symptom onset remains severely limited, even when primary risk factors such as the apolipoprotein E (APOE) ɛ4 allele are known. Objective: Although executive dysfunction is highly prevalent and is a primary contributor to loss of independence in those with AD, few studies have examined neural differences underlying executive functioning as indicators of risk for AD prior to symptom onset, when intervention might be effective. Methods: This study examined event-related potential (ERP) differences during inhibitory control in 44 cognitively intact older adults (20 ɛ4+, 24 ɛ4-), relative to 41 young adults. All participants completed go/no-go and stop-signal tasks. Results: Overall, both older adult groups exhibited slower reaction times and longer ERP latencies compared to young adults. Older adults also had generally smaller N200 and P300 amplitudes, except at frontal electrodes and for N200 stop-signal amplitudes, which were larger in older adults. Considered with intact task accuracy, these findings suggest age-related neural compensation. Although ɛ4 did not distinguish elders during go or no-go tasks, this study uniquely showed that the more demanding stop-signal task was sensitive to ɛ4 differences, despite comparable task and neuropsychological performance with non-carriers. Specifically, ɛ4+ elders had slower frontal N200 latency and larger N200 amplitude, which was most robust at frontal sites, compared with ɛ4-. Conclusion: N200 during a stop-signal task is sensitive to AD risk, prior to any evidence of cognitive dysfunction, suggesting that stop-signal ERPs may be an important protocol addition to neuropsychological testing

    Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors.

    Get PDF
    Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cancer. Data from 24 studies of the Breast Cancer Association Consortium were pooled. Using up to 34,793 invasive breast cancers and 41,099 controls, we examined whether the relative risks associated with 23 single nucleotide polymorphisms were modified by 10 established environmental risk factors (age at menarche, parity, breastfeeding, body mass index, height, oral contraceptive use, menopausal hormone therapy use, alcohol consumption, cigarette smoking, physical activity) in women of European ancestry. We used logistic regression models stratified by study and adjusted for age and performed likelihood ratio tests to assess gene-environment interactions. All statistical tests were two-sided. We replicated previously reported potential interactions between LSP1-rs3817198 and parity (Pinteraction = 2.4 × 10(-6)) and between CASP8-rs17468277 and alcohol consumption (Pinteraction = 3.1 × 10(-4)). Overall, the per-allele odds ratio (95% confidence interval) for LSP1-rs3817198 was 1.08 (1.01-1.16) in nulliparous women and ranged from 1.03 (0.96-1.10) in parous women with one birth to 1.26 (1.16-1.37) in women with at least four births. For CASP8-rs17468277, the per-allele OR was 0.91 (0.85-0.98) in those with an alcohol intake of <20 g/day and 1.45 (1.14-1.85) in those who drank ≥ 20 g/day. Additionally, interaction was found between 1p11.2-rs11249433 and ever being parous (Pinteraction = 5.3 × 10(-5)), with a per-allele OR of 1.14 (1.11-1.17) in parous women and 0.98 (0.92-1.05) in nulliparous women. These data provide first strong evidence that the risk of breast cancer associated with some common genetic variants may vary with environmental risk factors

    Plant reproduction in the alpine landscape : reproductive ecology, genetic diversity and gene flow of the rare monocarpic "Campanula thyrsoides" in the Swiss Alps

    Get PDF
    Aims & Objectives The work presented in this thesis forms part of a larger project “How patchy habitat and isolation affect alpine plant life: genetic diversity, gene flow and mating systems”, which includes the PhD studies of Patrick Kuss and the author under the supervision of Professor Jürg Stöcklin. This doctoral thesis investigates the consequences of the natural fragmentation and patchiness of alpine landscapes on the life of alpine plant populations. The central focus of the thesis is on the mating system, the role of inbreeding and/or outbreeding depression, genetic diversity and geographic structure within and among populations of the rare Alpine monocarpic perennial Campanula thyrsoides. The main objectives and research questions addressed are: • Is Campanula thyrsoides self-compatible (SI) and if not, does the SI system break down with flower age? Do inbred C. thyrsoides offspring in the common garden suffer from inbreeding depression? • Do we find a distance related inbreeding depression (poorer reproducive output) or outbreeding depression (increased reproductive output) in field populations of C. thyrsoides following crosses of different crossing distances (selfing, 1m, 10m, 100m and among distant populations)? • How much genetic diversity exists within populations of C. thyrsoides and how does it relate to population size and altitude? Has the natural habitat fragmentation let to strong genetic differentiation and restricted gene flow among populations of C. thyrsoides resulting in a pronounced geographic structure? Study species In order to seek answers to our research questions, we choose to study a yellow bellflower; Campanula thyrsoides. The choice was based on the information that C. thyrsoides is a rare plant species, which is only found on calcarious soils within the European Alps and adjacent mountain ranges (Aeschimann et al. 2005). The plants selectiveness for carbonate bearing soils together with the fact that its seeds are not adapted to long-distance dispersal (Tackenberg 2003) are the main reasons for the isolation and small sizes of many of its populations. These population characteristics, therefore, made C. thyrsoides a suitable study species. Another important characteristic of C. thyrsoides, and one of the main reasons for its inclusion in the study is because it is a monocarpic perennial which flowers once and subsequently dies (Jäger 2000). Monocarpic plants species, which are more commonly found in subtropical and tropical mountain systems (e.g. the giant rosettes of Puya spp, Espeletia spp., Echium spp. etc., Smith & Young 1987; Young & Augspurger 1991) are rare amidst the temperate alpine flora (for the Alps, see Aeschimann et al. 2005). Monocarpy can promote genetic differentiation between populations by reducing the effective population size due to a shorter generation time and lower density of populations (Loveless & Hamrick 1984; Vitalis et al. 2004). When studying the effects of population isolation and habitat fragmentation on plant reproduction (e.g. mating system and inbreeding depression), it is, moreover, ideal to study a Campanula species. Although most Campanula species are selfincompatible and allogamous (Nyman 1993), both a break-down in the SI system with flower age (Vogler et al. 1998) and an evolution towards complete self-compatibility (Ægisdóttir & Thórhallsdóttir 2006) have been recorded. Design We studied the reproductive ecology and genetic diversity of Campanula thyrsoides by firstly setting up pollination experiments in the common garden and in the field and secondly by sampling leaf material in 32 field populations in Switzerland. In the common garden study, we set up a pollination experiment in order to study the breeding system of C. thyrsoides, including the consequences of selfing, half-sibling crossings and outcrossing on reproductive output and seedling performance. Moreover, field experiments in four populations were set up in the Swiss Alps in order to study the effect of different crossing distances on reproduction in C. thyrsoides and to see if evidence would be found of hidden inbreeding depression or outbreeding depression following large-distance crossings compared to within-population crossings. In addition, we studied the genetic diversity, gene flow and geographical structure within and among 32 field populations of C. thyrsoides in Switzerland, covering both large geographical and altitudinal ranges. The genetic study was conducted using 5 co-dominant microsatellite markers. In addition, we studied the genetic diversity in C. thyrsoides and two other alpine plants using random amplified polymorphic DNA (RAPD) marker as well as studing the evolutionary demography of C. thyrsoides
    corecore